
PIMMiner: A High-performance PIM Architecture-aware
Graph Mining Framework

Presenter: Jiya Su Advisor: Rujia Wang
Computer Science of Illinois Institute of Technology

• Compare with other GPMI software systems:
GraphPi [1]: 344x average speedup
AutoMine [2]: 109x average speedup

• Compare with the hardware GPMI accelerators:
Gramer [3]: 696x average speedup
FlexMiner [4]: 5.9x average speedup
DIMMining [5]: 1.3x average speedup
NDMiner [6]: 37x average speedup

Evaluation Results
We propose PIMMiner, a high-performance PIM
architecture graph mining framework.
• We first identify that current PIM architecture

cannot be fully utilized by graph mining
applications.

• Next, we propose a set of optimizations that
enhance the locality, and internal bandwidth
utilization and reduce remote bank accesses and
load imbalance through cohesive algorithm and
architecture co-designs.

• We compare PIMMiner with several state-of-the-
art graph mining frameworks and show that
PIMMiner is able to outperform all of them
significantly.

Abstract

• Graph pattern mining (GPMI) needs to find all
subgraphs with different patterns that meet the
application requirements.

• GPMI applications are considered as a new class of
data-intensive applications that generate massive
irregular computation workloads and memory
accesses, which degrade the performance
significantly.

Background

• Directly offload the GPMI execution kernel to PIM
cannot achieve desired performance. We observe
high load imbalance and lots of inter-channel
remote bank accesses.

Motivation

PIMMiner has five lightweight architectural
optimizations that work cohesively.

PIMMiner Framework Overview

• Conditional Access Filter (Filter): PIMMiner adds
lightweight hardware dedicated to filter
unnecessary data from memory. According to
AutoMine, PIM units only need the nodes !" < !$.

PIMMiner Framework Design

• Processing-in-Memory (PIM) integrates
processing units inside the memory to
reduce the overhead of frequent data
movement and achieve high-
performance and energy-efficient
computation.

• Samsung has recently started
manufacturing HBM-PIM chips. The
HBM-PIM incorporates PIM cores inside
of memory banks. There are three ways
for a PIM unit to access memory: (1)
near-core bank access, (2) intra-channel
bank access; (3) inter-channel remote
bank access.

HBM-PIM Architecture

• Local-First Data Mapping (Remap): We propose a
new address mapping method to exploit low-
latency and high-bandwidth local memory bank
accesses for PIM units. The new mapping maps
the data in the same neighbor list to the same
bank group.

• Critical Data Duplication (Duplication): To further
reduce the remote memory accesses, PIMMiner
stores critical data in the unused memory space
in the memory banks.

• Workload Scheduler with Stealing (Stealing):
PIMMiner achieves a PIM-aware workload
scheduler by maintaining the execution tables
and schedule tables on each PIM unit to address
the load imbalance issues.

• Working with specialized GPMI accelerator (Set):
PIMMiner can achieve even higher performance
with integration of specialized GPMI accelerator
in PIM units, such as the accelerator for
intersection set operations.

Fig1: Performance of PIMMiner with the effectiveness of proposed
optimizations. In each bar, we show the average time across cores
(the solid line) and the total execution time(top of bar).

• Overall, by enabling all optimizations, PIMMiner
achieves 15.91x average speedup and 137.32x
maximum speedup over the baseline PIM.

• The performance improvement from PIMMiner
optimizations:
Filter: 2.01x average, 17.57x maximum speedup
Remap: 1.39x average, 2.74x maximum speedup
Duplication: 1.84x average, 3.05x maximum speedup
Stealing: 3.01x average, 26.87x maximum speedup
Set: 1.49x average, 2.26x maximum speedup

!"# $% ∈ '
!"# $(∈) $% *+, $(≠ $%
!"# $. ∈) $% −) $(
*+, $. < $(*+, $. ≠ $%
$%, $(, $. 23 *+ 4564,,2+7
8"9+:4# += 1

AutoMine Algorithm:

Pattern

Pattern matching

on graph G

Graph G

>?

>@ >A

Complete
pattern

Add
direction

References
[1] T. Shi et al., “Graphpi: High performance graph
pattern matching through effective redundancy elimination,” in
SC, 20.
[2] D. Mawhirter et al, “Automine: harmonizing high-level
abstraction and high performance for graph mining,” in SOSP,
20.
[3] P. Yao et al., “A locality-aware energy-efficient
accelerator for graph mining applications,” in MICRO, 20.
[4] X. Chen et al., “Flexminer: a pattern-aware accelerator for
graph pattern mining,” in ISCA, 21.
[5] G. Dai et al., “Dimmining: pruning-efficient and parallel graph
mining on near-memory-computing,” in ISCA, 22.
[6] N. Talati et al., “Ndminer: accelerating graph pattern
mining using near data processing.” in ISCA, 22.

Acknowledgement
This work is collaboratively done with Dr. Peng Jiang at
University of Iowa. Our research is generously supported by the
National Science Foundation under grant CCF-2029014 and
CCF-2028825.

…

Critical Data Duplication

! " :

! $:

…

! % :

Execution Table:

&'(') $ (($) &'(') % ((%) &'(') " ((") …
…

Schedule Table:
&'(') $ (($) &'(') % ((%) &'(') " ((") …

…

Bank

PIM Unit (set)

Conditional
Filter

Bank

Bank

PIM Unit (set)

Conditional
Filter

Bank

Bank

PIM Unit (set)

Conditional
Filter

Bank

Bank

PIM Unit (set)

Conditional
Filter

Bank

channel 0

TSVs & Periphery

! %$:

Local-First Data Mapping

Workload Stealing Table

! %, :

condition

!"#:>,=,<
subtractor
32b int

Filter
Logic

data
)*
from
bank

threshold +ℎ

)* − +ℎ send)* or 4566

Restriction: 78 < 9:

Bank Group 0

! "# = ! # : 1 2

! "# = ! # : 6 8

PIM Unit 0
& '(− & '*

! "# = ! # : 3 5

! "# = ! # : 10 11

Bank Group 0

!(",) = ! . : 0 2
…

!(",) = ! . : 4 10
…

Local-First DataMapping:
Channel 0 Channel 1

Filter: '(< 5
… …

TSVs & Periphery
& 5 = {0,2,4}

PIM Unit 1

Filter: '* < 5

