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• Compare with other GPMI software systems:
GraphPi [1]: 344x average speedup 
AutoMine [2]: 109x average speedup 

• Compare with the hardware GPMI accelerators:
Gramer [3]: 696x average speedup
FlexMiner [4]: 5.9x average speedup
DIMMining [5]: 1.3x average speedup
NDMiner [6]: 37x average speedup

Evaluation Results
We propose PIMMiner, a high-performance PIM 
architecture graph mining framework. 
• We first identify that current PIM architecture 

cannot be fully utilized by graph mining 
applications. 

• Next, we propose a set of optimizations that 
enhance the locality, and internal bandwidth 
utilization and reduce remote bank accesses and 
load imbalance through cohesive algorithm and 
architecture co-designs. 

• We compare PIMMiner with several state-of-the-
art graph mining frameworks and show that 
PIMMiner is able to outperform all of them 
significantly.

Abstract

• Graph pattern mining (GPMI) needs to find all 
subgraphs with different patterns that meet the 
application requirements.

• GPMI applications are considered as a new class of 
data-intensive applications that generate massive 
irregular computation workloads and memory 
accesses, which degrade the performance 
significantly.

Background

• Directly offload the GPMI execution kernel to PIM 
cannot achieve desired performance. We observe 
high load imbalance and lots of inter-channel 
remote bank accesses.

Motivation

PIMMiner has five lightweight architectural 
optimizations that work cohesively.

PIMMiner Framework Overview

• Conditional Access Filter (Filter): PIMMiner adds 
lightweight hardware dedicated to filter 
unnecessary data from memory. According to
AutoMine, PIM units only need the nodes !" < !$.

PIMMiner Framework Design

• Processing-in-Memory (PIM) integrates 
processing units inside the memory to 
reduce the overhead of frequent data 
movement and achieve high-
performance and energy-efficient 
computation.

• Samsung has recently started 
manufacturing HBM-PIM chips. The 
HBM-PIM incorporates PIM cores inside 
of memory banks. There are three ways 
for a PIM unit to access memory: (1) 
near-core bank access, (2) intra-channel 
bank access; (3) inter-channel remote 
bank access.

HBM-PIM Architecture

• Local-First Data Mapping (Remap): We propose a 
new address mapping method to exploit low-
latency and high-bandwidth local memory bank 
accesses for PIM units. The new mapping maps
the data in the same neighbor list to the same
bank group.

• Critical Data Duplication (Duplication): To further
reduce the remote memory accesses, PIMMiner 
stores critical data in the unused memory space 
in the memory banks.

• Workload Scheduler with Stealing (Stealing): 
PIMMiner achieves a PIM-aware workload 
scheduler by maintaining the execution tables
and schedule tables on each PIM unit to address 
the load imbalance issues.

• Working with specialized GPMI  accelerator (Set):
PIMMiner can achieve even higher performance 
with integration of specialized GPMI accelerator 
in PIM units, such as the accelerator for
intersection set operations.

Fig1: Performance of PIMMiner with the effectiveness of proposed 
optimizations. In each bar, we show the average time across cores 
(the solid line) and the total execution time(top of bar).

• Overall, by enabling all optimizations, PIMMiner
achieves 15.91x average speedup and 137.32x 
maximum speedup over the baseline PIM.

• The performance improvement from PIMMiner 
optimizations:
Filter: 2.01x average, 17.57x maximum speedup
Remap: 1.39x average, 2.74x maximum speedup
Duplication: 1.84x average, 3.05x maximum speedup
Stealing: 3.01x average, 26.87x maximum speedup
Set: 1.49x average, 2.26x maximum speedup
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