PIMMiner: A High-performance PIM Architecture-aware
Graph Mining Framework

Presenter: Jiya Su Advisor: Rujia Wang

Computer Science of Illinois Institute of Technology ILLINOIS INSTITUTE

OF TECHNOLOGY

Abstract Motivation PIMMiner Framework Design Evaluation Results

We propose PIMMiner, a high-performance PIM « Directly offload the GPMI execution kernel to PIM i . L :

architecture graph mining framework. cannot achieve desired performance. We observe « Conditional Access Filter (Filter): PIMMiner adds g:}fifsle’sb%%Iiib;;g%aaue(;ptenerglzlat;%%s’lgél\g;\f{ HIEE

. We first identify that current PIM architecture high load imbalance and lots of inter-channel lightweight hardware dedicated to filter maximum s cedu O% or ,][Dh o bageline PIM
cannot be fully utilized by graph mining remote bank accesses. unnecessary data from memory. According to b b '

« The performance improvement from PIMMiner

applications. TABLE I: Performance between 96-threads CPU (L3 cache) AutoMine, PIM units only need the nodes v, < v;. ot ,
£ ontimizat h , optimizations:
« Next, we propose a set of optimizations that and 128-core PIM (L1 cache) in 4-CC. Filter: 2.01x average, 17.57x maximum speedup
enhance the locahtYa and internal bandwidth Graph | Processing | Execution | Average | Exe/Avg | Execution | Average I data Remap: 1.89x average, 2 74X maximum Speedup
1 1 Unite Time (s) | Time (s) Speed Speed . . .
Ftﬂéz'atl]gnl and rte}?uce flem(})lte l.oamk1 accs[ises arclid - U | 3somon | eemert 4ag 592:1’ z 46:1’ Ithreshold th fr?rcn Duplication: 1.84x average, 3.05x maximum speedup
Jar A ianEe LT ous 1 CONESIVE AsOrT Al PIM__| 413805 | 57605 | LIS pank Stealing: 3.01x average, 26.87x maximum speedup
architecture co-des.lgns. | PP pd | 17ibos | 1eemos | 100 415x | 2.16x Set: 1.49x average, 2.26x maximum speedup
« We compare PIMMiner with several state-of-the- AS CPU | 1.04E-02 | 7.04E-03 | 148 hssx | 2.02x | - |
. PIM 4.05E-03 | 2.41E-03 1.68 ' ' - . BB Base 228 Filter [ZZA Remap [ZZA Duplication @ [/ Stealing [~ A Set
art graph mining frameworks and show that ol T8asE 0 T 1 Restriction: v, < th
MI CPU 1.64E-0 8.48E-0 .93 0.39x 0.51x 1.0
PIMMiner is able to outperform all of them PIM__| 422B-01 | 166E01 | 2.53 condition £ 0.9
e YT CPU [49E-01 | 9.18E-02 | 1.63 0.08 0.24 Filter = 0.8
significantly. PIM 183 | 378E-01 | 4384 08x 24x subtractor e -, | = = — 07
g|C cmop: > —_ < 0 0.6
A CPU 1.83E-01 | 1.37E-01 | 1.34 5 66 553 32b int p: ==, N 0.5 |
PIM 6.89E-02 | 5.40E-02 | 1.28 OOR PoR g 0.4 |
L CPU 3.09 2.59 1.19 0.03x 0.56x 502 ,
PIM 103.13 4.63 22.29 ' ‘ U — th send v, or NULL Z 0.1 %m % . = WA %D -
X ' 5CC-Cl 5CC-PP 5CC-AS 5CC-Ml| 5CC-YT 5CC-PA 5CC-LJ
Background 219 -
.. . = 0.8
« Graph pattern mining (GPMI) needs to find all 5 0.7 -
o o — - N A |
subgraphs with different patterns that meet the PIMMiner Eramework Overview » Local-First Data Mapping (Remap): We propose a =02 - 3
application requirements. new address mapping method to exploit low- ; §§] i ’
GPMI applications are considered as a new class of PIMMiner has five lightweight architectural latency and high-bandwidth local memory bank 0.0 W LC WL WAl W B B W Ty

data-intensive applications that generate massive
irregular computation workloads and memory

optimizations that work cohesively.

accesses for PIM units. The new mapping maps
the data in the same neighbor list to the same

Fig1: Performance of PIMMiner with the effectiveness of proposed

: | : - optimizations. In each bar, we show the average time across cores
channel O Local-First Data Mapping bank roun. P AN J _ . g
af:ceg .Ses’ which degrade the performance F N 5 b (the solid line) and the total execution time(top of bar).
significantly. Bank Bank ; - e Lt o rorsfe _
P . . ! N(10): ocal-Hirst Lata lviapping: - Compare with other GPMI software systems:
i Uf"f 5 i Urf'_t Sl N(18): P Channel 0 e, Channell . .. GraphPi [1]: 344x average speedup
Pattern matching P |] SR | - — i Bank Group 0 Bank Group 0 _ AutoMine [2]: 109x average speedup
on graph G . . \ C”““’(")Data Puplication | Neo=N@): [1]02 Ny =N(S): 0] 2 + Compare with the hardware GPMI accelerators:
\ N(0): : N(wy) =N(@0): | 6| 8 3
' : ’ : Gramer [3]: 696x average speedup
N(1): ; :] .
l ng?fe'rerfe TSVs & Periphery : : o o PIM Unit 1 FlexMiner [4]: 5.9x average speedup
A e .« s i
! Workload Stealing Table Filter: by < 5 Filter. v, < 5 DIMMining [5]: 1.3x average speedup
Bank Bank I Execution Table: Nw) =NG: [3]5 Newy) = NEs): | 2 |10 NDMiner [6]: 37x average speedup
evel 0 (vy) Levell (vq) Level2 (v,) - n 5
Graph G PIM Unit (set) PIM Unit (set) : - 2o) L 1wy b 2 w2) N(vy) =N((E): 10 | 11 :
T AutoMine Algorlthm Conditional Conditional I ; - . E N(5) ={0,2,4}
Filter Filter Schedule Table: I '. E R f
ld_Adt‘?' forvy €V : Level 0 (v,) Level 1 (v;) Level2 (v;) ' rreerasrannnn TSV & PetiRherye e ... : ererences
rection for vy € N(vy) and v, # v, | — : R
.. 1| T. Shi et al, “Graphpi: High performance graph
forv, € N(vy) — N(v,) [1] pnp gnp grap

pattern matching through effective redundancy elimination,” in
« Critical Data Duplication (Duplication): To further SC, 20.

reduce the remote memory accesses, PIMMiner [2] D. Mawhirter ef al “Automine: harmonizing high-level
stores critical data in the unused memory space abstraction and high performance for graph mining,” in SOSP,

and v, < v, and v, # v,
(vo, V1, Vy) is an embedding
counter +=1

» Processing-in-Memory (PIM) integrates . R T hannel1 | : 20.
proceSSing el insidsel Ehe memoglg‘y - HBM-PIM Architecture R DFD‘:‘;ME e In the memory banks. 3] P. Yao et al, “A locality-aware energy-efficient
reduce the overhead of frequent data | Hank || Hank | | Bank |] Bank |, accelerator for graph mining applications,” in MICRO, 20.
) cd | PIM PIM || | PIM PIM | | - Workload Scheduler with Stealing (Stealing): 4] X. Chen er al, “Flexminer: a pattern-aware accelerator for
movement and achieve high- TSVs _ U ouniti | unit | | Unit Unit | | : : raph pattern mining,” in ZSCA, 21
¢ q eficient e = : _J, gt | : | PIMMiner achieves a PIM-aware workload graph pa U, T e, .
per Ormapce and energy-eiiicien DRAM Die | Ban Bank || | Bank Bank scheduler by maintaining the execution tables _5_. G Dai ef al, “Dimmining: pruqlng:,gfflclent and parallel graph
computation. [T T o | : | | : mining on near-memory-computing,” in ZISCA, 22.
. Samsung has recently started DRAM Die ' () TSVs&Periphery (3) and schedule tables on each PIM unit to address 6] N. Talati ef al, “Ndminer: accelerating graph pattern
:) ORAM Die 1 - , — the load imbalance issues. mining using near data processing.” in ISCA, 22.
gs&uaﬁuiﬁgcg)rlﬂgx’;e}g 1\P![Ilf/lhizlgc))?f.erlsj}ilrelside "~ DRAM Te' | | Bk || ark | | Ml S
of memory banllgs There are three ways HOST DRAM Die 5 E“‘;"t \ 8“‘,2/ : ; B"‘;"t S“‘-i"t - Working with specialized GPMI accelerator (Set):
for 2 PIM Uit fo aceess mermory. (1) Buffer Die 3 el \ ol { ! PIMMiner can achieve even higher performance Acknowledgement
bank (2) int Y: h 1 A —ymm CO000000 . | Bank Bank || | Bank Bank with integration of specialized GPMI accelerator This work is collaboratively done with Dr. Peng Jiang at
LUSELHEOIRS LD € clBOe) HDEEHED 0TS Mool e SNSRI NN R PRRRRRT L University of Iowa. Our research is generously supported by the

in PIM units, such as the accelerator for

bank access; (3) inter-channel remote . . .
intersection set operations.

bank access.

National Science Foundation under grant CCF-2029014 and

(a) HBM-PIM architecture overview CCF-2028895.

(b) HBM-DRAM Die and PIM unit memory accesses

